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ABSTRACT

Electric propulsion flight and technology demonstrations conducted primarily by

Europe, Japan, Peoples Republic of China, USA, and USSR are reviewed. Evolution-

ary mission applications for high specific impulse electric thruster systems are

discussed, and the status of arcjet, ion, and magnetoplasmadynamic thruster and

associated power processor technologies are summarized.

INTRODUCTION

Most spacecraft use low thrust chemical propulsion systems for either apogee

topping, stationkeeping, attitude control, orbit transfer/control, and/or drag

makeup. In many cases the use of high specific impulse electric propulsion can

significantly reduce the required propellant mass, minimize low Earth orbit (LEO)

propellant logistics for space platforms, extend mission life, and in some cases
influence the choice of launch vehicles (refs. 1,2). Electric propulsion can

positively impact mission performance, life, as well as initial and life-cycle

cost.

During the last three decades more than 60 spacecraft using electric propulsion

were deployed in Earth-orbit (refs. 3,4). While some electric propulsion (EP)

systems were experimental, others provided drag makeup, attitude control,

station-keeping, or orbit adjustments. The use of electric propulsion has been

driven by the availability of spacecraft power and the state of space power

system development. Nearly all electric thrusters developed to date for flight

applications have power levels in the 3 to 2000 W range. The power levels

available to propulsion are dictated by the spacecraft battery, fuel cell, or

solar array capabilities. Solar arrays in the 2 to 3 kW range are now employed

on geosynchronous satellites, and developments in nickel-hydrogen batteries have

provided an entree for low power electrothermal propulsion systems for North-

South stationkeeping (refs. 5-7). 	 At present, the hydrazine resistojet and

arcjet technologies have been transferred to industry for communication satellite



applications. Larger solar arrays operating in the 5 to 12.5 kW range have
reached a high level of technological maturity (ref. 8), and the SP-100 space

nuclear power system, which could provide 100 kW-class power levels, is currently

being developed (ref. 9). There is also considerable interest in the maneuver-

ing, orbit raising, and lunar transfer of small satellites, and fuel efficient

electric propulsion systems may provide significant performance and mass benefits

for these applications (refs. 1,10). New users of electric propulsion, in this

evolutionary process, will likely be involved with Earth-space applications which

might include technology demonstrations, orbit raising, apogee topping for

comsats, and spacecraft maneuvering. Energetic solar electric propulsion (SEP)

missions to planets, comets, and asteroids will receive strong attention from

mission planners, and near-term propulsion technologies will also focus on SP-100

nuclear electric propulsion (NEP) class mission applications (refs. 1, 8-11).

This paper will review electric propulsion flight and technology demonstrations

conducted primarily by the USA. Some of the electric propulsion flight

experiences of Europe, Japan, the Peoples Republic of China, and the Soviet Union

are also discussed. Evolutionary mission applications for high specific impulse

electric thruster systems will be presented, and the status of arcjet, ion, and

magnetoplasmadynamic (MPD) thrusters and their associated power processor

technologies will be summarized.

ELECTRIC PROPULSION FLIGHTS AND TECHNOLOGY DEMONSTRATIONS

Electric Propulsion Systems

The major flight qualified electric propulsion systems are resistojets : ion

thrusters, ablative pulsed plasma thrusters, stationary plasma thrusters, pulsed

magnetoplasmadynamic thrusters, and arcjets (refs. 12-32) (See Table I). At

least 31 spacecraft have flown with resistojets used for North-South station-

keeping (NSSK), attitude control, orbit adjustment, or experiments. The Soviets

report that about 60 stationary plasma thrusters (SPT) have been used on various

satellites for periods up to 600 hours (ref. 4). Seven ion propulsion systems

have been flown, one of which, the Space Electric Rocket Test (SERT-II), had ion

thrusters that operated for periods in excess of 5 months (ref. 26).

Electrothermal Thrusters

Resistojets. - The most simple and lowest risk EP flight systems use

nitrogen, ammonia, or hydrazine resistojets, which electrically augment

propellant heat exchangers to increase the specific impulse. The resistojets can

be heated directly from the energy storage system or employ a single power supply

at power levels that have ranged from 3 to about 500 W (ref. 31). From 1965 to

1971 over 20 spacecraft used nitrogen, ammonia, or hydrazine resistojets for

stationkeeping, orbit maintenance, Qr experiments (ref. 31). In 1965 the Vela-

III spacecraft provided the first application of the resistojet (ref. 33) in

which nitrogen thrusters were used for orbit adjustment. In 1968 the ATS-4

spacecraft successfully tested an 18 mN ammonia resistojet system for a period

of about 800 h (ref, 24). The most prevalent resistojet systems use hydrazine

propellant storage and feed systems that have nearly the same technology as

conventional monopropellant hydrazine systems (ref. 7). 	 The "fuel efficient"



hydrazine resistojets perform stationkeeping and have a specific impulse of
300 s versus 200 s for the conventional monop rope llant hydrazine thrusters (ref.

5).	 At least 44 of the hydrazine resistojets or electrothermal hydrazine
thrusters (EHT) have been developed by the Rocket Research Company and the
General Electric Company for communication satellite NSSK (ref. 7). TRW also
developed EHT's that were flown aboard the INTELSAT-V series of spacecraft for
NSSK (ref. 6).

Multi propel lant resistojets, using waste gases, have been baselined for the Space
Station Freedom to provide drag makeup thus minimizing the need for propellant
resupply and waste fluid return (ref. 34). The multipropellant resistojet has
been successfully tested on H2 , He, N21 CH4 , Ar, CO2 , and steam (ref. 35), and
a 10,000 h Iifetest was successfully performed using CO 2 and N 2 (ref. 36).
Preliminary efforts have addressed propulsion system integration issues and the
development of a zero-gravity steam generator (refs. 34,37).

Arcjets. - More recently, hydrazine arcjets have reliably demonstrated
specific impulse levels up to 520 s; such devices are now being flight qualified
for AT&T comsat NSSK (ref. 38). The hydrazine arcjets can provide a 50% to 100%
increase in specific impulse over conventional chemical and resistojet thrusters.
The increased "fuel efficiency" could save several hundred kilograms of
propellant which could expand payload capability, extend satellite life, or
reduce launch vehicle class (ref. 1). The hydrazine arcjet system has undergone
thermal-mechanical qualification tests, cyclic-life tests, plume impact tests,
as well as contamination and thermal loading experiments (refs. 1,38). Plume
impacts on communications were addressed testing a FLTSATCOM qualification model
spacecraft near the arcjet system (ref. 39). Antennas and probes, used to
determine the extent of radiated and conducted electromagnetic emissions,
revealed that radiated emissions from the arcjet and its power processor were
within accepted limits at frequencies above 500 MHz, indicating conventional GHz
class communications would not be affected by the kW-class arcjet system. The
detailed assessment of arcjet/spacecraft integration issues is an ongoing pro-
gram element within NASA and industry.

Nickel-hydrogen battery cycle-life and battery management technology for comsats
has advanced significantly, and the under-utilized battery resource has provided
acceptable risk for kW-class resistojets and arcjets to perform satellite
stationkeeping (refs. 7,40). Advanced batteries, hydrazine propellant management
systems, and simple power processing schemes have been the foundation for the
evolution from monopropellant hydrazine thrusters, to resistojets, to arcjet
systems.

In anticipation of flights of higher power photovoltaic systems, the United
States Air Force has sponsored the development of aminonia'and hydrogen arcjets
for orbit raising applications (ref. 32). Recently, a 30 kW ammonia thruster was
developed and life tested by the Jet Propulsion Laboratory (JPL) for 573 h. A
thruster malfunction at 573 h was due to whisker growth on the tungsten cathode,
and the anode constrictor experienced unacceptable erosion (ref. 41). Effects
of power supply ripple on whisker growth, arcjet thermal design, and design
verification tests are underway at lower power levels at JPL.

The Air Force, Aerospace Corporation, and TRW are in the process of defining the
Electric Insertion Transfer Experiment (ELITE) which is a flight test of an 1800
kg spacecraft which uses ammonia arcjets for orbit transfer from 370 km to 3900
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km (ref. 42). Arcjet power level is in the 3 kW to 10 kW range, and thruster

predevelopment work is underway at JPL (ref. 32). A 10 kW ammonia thruster was

developed and life- tested for 1460 h (ref. 43). Thruster specific impulse was
nominally 650 s at 36% overall efficiency. The test was terminated at 1460 h due

to the fracture of a boron nitride insulator. Future work on the 10 kW ammonia

thruster includes failure modes assessments, design modifications, and extended

tests with cyclic and power throttling demonstrations.

The University of Stuttgart is conducting research on hydrogen thermal arcjets

in the 30 kW to 100 kW range (ref. 44). Arcjet tests and analytical model

development involve water-cooled thrusters so information can be obtained on

anode power deposition and arc current distributions. This effort is an element
of an SDIO/NASA research and technology program for solar electric orbit transfer

vehicles (EOTV's) (ref. 1).

The NASA Lewis Research Center (LeRC) is also developing hydrogen arcjets in the

5 kW to 30 kW range for Earth-space applications (ref. 45). Laboratory-class

radiation cooled arcjets are used to refine the design of devices scaled from kW-

class arcjets, and to assess performance and life capability. Thrust efficien-

cies of 30% and 34% were obtained at 1460 s and 1040 s specific impulse,

respectively. Testing was short-term, and extended tests are still required to

establish the integrity of electrodes and long-term performance.

Ten kW-class arcjet propulsion will likely be flight tested on near-Earth

precursors and operationally demonstrated on EOTV's that rely heavily on advances

in photovolaic array technology. Flexible arrays using the Advanced Photovoltaic

Solar Array (APSA) technology will probably achieve a specific power of 130 W/kg

for a wing size of 7.8 kW. This may be an optimistic specific power since rela-

tively thick cover-glass is required to minimize cell degradation during transit

through the Van Allen belts (ref. 8). Other solar array options include a flex-
ible array (APSA) employing thin film, radiation resitant cells and also concen-

trator arrays which provide more radiation protection and are "technology

transparent" to the type of cells (refs. 8,46). The EOTV would certainly be a

major step in the evolution of power, propulsion, and propellant management

systems.

Ion Thrusters

A 10 cm diameter mercury electron bombardment ion thruster, first operated at

NASA's LeRC in 1960, was developed, integrated into a propulsion system, and

tested in 1964 on a ballistic flight in the Space Electric Rocket Test I (SERT

I) (refs. 22,47). Electric propulsion flight information is summarized in Table

I. The thruster test lasted 30 minutes and verified that the ion beam could be

neutralized, and that the thrust produced was nearly equal to that expected from

ground test measurements and calculations. Within a year, the Soviet Union was

also conducting ion thruster tests in the upper atmosphere using argon, nitrogen,

and air propellants under the YANTAR program (ref. 48).

Based on the success of SERT I, NASA developed a more powerful, long life, 15 cm

diameter mercury ion thruster for a second flight demonstration, designated SERT

II (refs. 26,49-51). The SERT II system was launched into a sun-synchronous-1000

km high polar orbit in 1970. The extended operation of two SERT II thrusters
demonstrated long term spacecraft and propulsion system compatibility in the

geocentric environment (ref. 26). The two thrusters demonstrated operation for
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periods of 3880 and 2880 h, respectively. Thruster restart was reliably

accomplished after 11 years in space. The thrust level was confirmed by several

methods, including altitude changes and on-board accelerometer measurements. The

solar array for SERT II was the largest in space at that time and provided 1270

W initially and about 800 W after more than 11 years in space. 	 In 1981, the

propellant supply was exhausted and thruster experimentation was terminated.

In 1974, the sixth Advanced Technology Satellite (ATS-6) was launched into
geosynchronous orbit (refs. 25',27). While the two electron bombardment cesium

ion engines failed due to propellant feed system problems, neutralizer operation

was satisfactory and demonstrated control of the spacecraft potential as the

spacecraft went in and out of eclipse or experienced magnetic substorms.

Cooperation between Japan's National Space Development Agency (NASDA), the

National Aerospace Laboratory (NAL), and the Electrotechnical Laboratory (ETL)

resulted in a successful space flight test of a small (2 mN) mercury ion
propulsion system on the third Engineering Test Satellite (ETS-III) in 1982

(refs. 52,53).

In addition to the experimental flights described above, several ion propulsion

technology demonstration programs have been conducted in preparation for

anticipated application. The success of NASA's SERT II program led to the

development of a propulsion system utilizing 8 cm diameter mercury ion thrusters

sized for NSSK functions of small communications satellites in geosynchronous

orbit. In the early 1980's, the Ion Auxiliary Propulsion System (IAPS) was
integrated as an experiment on a proposed USAF spacecraft (refs. 54-56). Due to

cancellation of the mission, the spacecraft is currently in storage.

In parallel with the IAPS program, NASA scaled the SERT II thruster upward in

size and power to perform primary propulsion functions. LeRC initiated the Solar

Electric Propulsion System (SEPS) technology program in the early 1970's. This

program was directed toward the development of an electric propulsion stage for

comet and asteroid rendevous mission applications (ref. 57). The 30 cm diameter

2.7 kW mercury ion thrusters, power processors, gimbals, thermal control systems,

and propellant management systems were carried to an advanced state ofdevelop-

ment. Thrusters and power processors demonstrated full mission capability by

passing lifetime, thermal-vacuum, and vibration testing (ref. 58). Several

extended tests of SEPS thrusters accumulated more than 30,000 h of operation over

a wide range of conditions, in addition to another 30,000 h of day-to-day

laboratory model thruster tests. Likewise, eight SEPS breadboard or higher level

power processors accumulated more than 64,000 h of operation under various-loads.

In 1980, the SEPS technology was transferred to NASA's Marshall Space Flight

Center.

Throughout the 1970's, mercury was the baseline propellant for ion thrusters

because of its high molecular weight, low ionization potential, storability, and

convenient vaporization. These features initially offset toxicity, reactivity,

and facility/spacecraft contamination concerns. However, analyses conducted in

the early 1980's indicated that inert gas propellants could provide some

performance benefits, such as nearly instantaneous startup and significantly

simplified power processing, which positively impact orbit raising and
stationkeeping functions.	 Inert gases are also noncontaminating and simplify

integration with the spacecraft and Earth-launch vehicles. They are also non-

toxic and nonreactive when released to ground test facilities and/or the bio-
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sphere, minimizing ecological concerns. Because of these considerations, the

inert gases xenon, krypton, and argon were tested in the baseline mercury
thruster developed for the SEPS program at NASA's LeRC and JPL (refs. 59,60).

A xenon ion propulsion subsystem (XIPS) was developed by Hughes Research

Laboratories (HRL) (with INTELSAT support) and ground tested (with NASA support)

for 4350 h with 3850 on-off cycles (refs. 61,62). This test simulated over 10

years of stationkeeping for a large communications satellite. The XIPS thruster

was 25 cm in diameter and produced about 64 mN of thrust. HRL has also designed

a propulsion system with similar technology using a 13 cm diameter thruster.

This version produced about 18 mN of thrust with an input power of 440 W (ref.

63). The thruster power supply contained only 400 parts, and the xenon tankage

fraction was only 12% at a storage pressure of 7.6 MPa (1100 psi). Preparations

for long-term cyclic tests of qualification model thrusters are underway.

NASDA has also chosen to develop a xenon ion propulsion system for stationkeeping

which utilizes 12 cm diameter, 23 mN thrusters (refs. 21,64). Development of

this Ion Engine System (IES) is a joint effort by NASDA, Mitsubishi Electric

Corporation (MELCO), and Toshiba.	 The IES is slated to perform the NSSK

functions for ETS-VI, which is scheduled for launch in the early 1990's (refs.

21,65). Likewise, the European Space Agency * (ESA) has sponsored electric
propulsion development resulting in xenon ion auxiliary propulsion systems (ref.

66). Germany's Radiofrequency Ion Thruster Assembly (RITA) is an experiment on

the European Retrievable Carrier (EURECA-1) scheduled for launch in 1992 (refs.

67-69). RITA is also being developed as half of the NSSK propulsion system for

the Advanced Relay and Technology Mission (ARTEMIS) planned for a 1995 launch.

The United Kingdom's UK-10 ion thruster, which utilizes a conventional DC

discharge to ionize propellant, rather than radio-frequency energy as in the RITA

thruster, is being developed as the other propulsion system for ARTEMIS (ref. 70)

(See Table I). Individual thrusters, for both the RITA and UK-10 systems,
produce 10 cm diameter ion beams with thrust levels of 15 and 25 mN, respec-

tively.

One focus of NASA's ion propulsion technology program is on near-term, near-Earth

mission applications. Applications include auxiliary propulsion roles such as

NSSK of geosynchronous spacecraft, as well as primary propulsion roles which

include orbit transfer vehicle propulsion for the shuttling of large space

structures and communications spacecraft from low to high Earth orbit. These

mission applications are the primary drivers for the operational requirements and

technology development needs for ion propulsion. Thruster power scaling

technologies are also being addressed in support of the Space Exploration

Initiative's Nuclear Propulsion Program which comprises both nuclear thermal and

nuclear electric propulsion technologies. The nuclear electric propulsion (NEP)

evolutionary path will probably involve robotic precursor flights using existing

technologies such as the SP-100 program elements (ref. 9). Potential flight

applications would involve missions to the moon, Pluto, or multiple asteroids

(ref. 11). Later phases of an NEP program might involve development of cargo and

piloted vehicles for missions to the moon and Mars (ref. 71).

To satisfy these mission requirements and achieve the goal of flight application

of ion propulsion on operational spacecraft, developments have been focused

toward obtaining user acceptance of the propulsion technology through system

simplification, thereby effecting reduced development costs and reduced risk.

These new directions include the transition from using mercury as the propellant
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to using the inert gases xenon, krypton, and argon. This change in propellants

has brought simplification to design in the thruster, propellant management, and

power processing, as well as in thruster operational requirements (throttling

strategies, thruster starting, and re-starting).

During the 1980's a change in the plasma containment scheme was made from that

used in the J-series thruster developed during the SEPS program. The current

discharge chamber incorporates high field strength magnets to form a ring-cusp

magnetic boundary. The design change was motivated by the need for a long-life
30 cm thruster optimized for operation with inert gas propellants, and the need

for improved thruster performance at the lower specific impulse values associated

with inert gas propellant operation. Other design modifications involved the

technology of inert gas discharge and neutralizer hollow cathodes, as well as

inert gas propellant management systems (ref. 72).

At NASA, the current programs are focused on the development of 30 cm xenon ion
thruster technology for both auxiliary and primary propulsion applications in the

0.5 to 5 kW power range per thruster. Several mission studies have shown that

significant mass savings can be realized by use of low power ion propulsion

systems for auxiliary propulsion functions including NSSK and maneuvering of

spacecraft (refs. 73-75). To optimize expectations for the implementation of ion

propulsion systems for one or more of these applications, a low-risk "derated"

approach is being pursued. In this Berated approach, a 30 cm diameter xenon ion

thruster, initially developed for primary propulsion, is operated at a fraction
of its design and demonstrated power level (ref. 76). The derated xenon

thrusters have provided specific impulse levels of 1700 s to 3000 s at overall

efficiencies of 43% and 66%, respectively. Ion thrusters being developed for

NSSK under other programs are small compared to the 30 cm design and operate near

both thermal and current density limits (ref. 76). The advantages of using this

derated approach include elimination of known life limiting issues, increas-

ed thrust-to-power ratio, reduced flight qualification times, and provisions for

a growth option to primary propulsion.

A recent study indicated that satellite mass in geosynchronous orbit decreased

by approximately 17 kilograms for each kilogram reduction in thruster mass (ref.

73). Because of this, a mass and volume reduction program has been initiated at

NASA LeRC with the derated thruster. The mass of a 30 cm diameter laboratory

thruster is 10.7 kg (ref. 77). Using novel approaches to the discharge chamber

design and magnetic circuit, development of an engineering model thruster with

a mass under 7 kg appears feasible.

In concert with the derated ion thruster development effort, joint testing

programs are being established with NASA and industry to establish a broader US
industrial base and awareness of ion thruster technology. NASA is providing

engineering model 30 cm ion thrusters, and associated ground support equipment

including power electronics and propellant feed systems, to conduct xenon ion

thruster testing at industry sites.

Additionally, work is progressing on the development of larger ion thrusters for

primary propulsion applications in the 10 kW to 20 kW input power range. Fifty

centimeter diameter thrusters with dished ion optics have been developed. Xenon

and argon efficiencies of about 70% have been obtained at specific impulse values

of 4000 s and 7500 s, respectively (ref. 78). Because of its low cost and good
performance, krypton is a preferred propellant for higher power ion thrusters.
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The 10 kW to 20 kW ion thrusters may be used on systems employing SEP or SP-100
NEP class power systems for earth-space or planetary missions (refs. 11,42).

Plasma Thrusters

At least nine spacecraft have been flown using pulsed plasma thrusters whose

propellant was ablative fluoropolymer products from solid Teflon propellant (See

Table I.) These propulsion systems were either experiments, or provided drag

makeup or stationkeeping. Average propulsion system power requirements were from

3 to 30 W. Excluding r •esistojets, the NOVA-1 was the first USA spacecraft to use

electric propulsion as an operational system without backup propulsion. 	 The

NOVA-1 pulsed plasma thrusters each produced 0.4 mN-s impulse bits from a main

discharge of 1630 V (ref. 16). The system had a total impulse capability of

about 2200 N-s while requiring an average power of only 30 W. As reported in

1989, three NOVA spacecraft were operational using pulsed plasma thrusters for

drag makeup with a total of 14 spacecraft years of flight experience (ref. 17).

Two pulsed MPD arcjet experiments have been flown by Japan (refs. 19,20), and a

third is scheduled in 1994 aboard the Space Flyer Unit-1 (SFU-1). The SFU-1
experiment will be the first space test to validate the propulsion performance

of pulsed MPD thrusters (ref. 21). The pulsed MPD arcjet tested aboard Spacelab-
1 in 1983 produced a peak power of about 2 MW during a series of 1 ms pulses

(ref. 20). This was the highest peak power plasma source ever flown on a

spacecraft which in this case was the USA Shuttle Orbiter. The objectives of the

Spacelab-1 experiment were associated with spacecraft charge control, airglow

excitation, and plasmadynamic experimentation while the objectives of the 1994

SFU-1 experiment are related to spacecraft propulsion. The primary objective is

to "verify the survivability of the MPD thruster system against launch and space

environments" and to compare ground and space propulsion performance (ref. 21).

More than 50 Stationary Plasma Thrusters (SPT) have been used on Soviet

spacecraft since 1972 on various series of satellites: Meteor, Gorizont, and

Ekran (refs. 4,79). In the SPT a plasma is formed by a discharge from an

external cathode to an anode channel with an external applied magnetic field.

Ions are accelerated by an electric field in the channel, and the exhaust is

volume neutralized by cathode electrons. Flight qualified SPT's have operated

with xenon at nominal power levels up to 0.7 kW producing about 30 mN of thrust

at values of specific impulse from 1000 to 2000 s (ref. 79). 	 In addition to

providing orbit adjustment, the SPT's have also been used in investigations of
the ionosphere on several satellite series (ref. 4). The SPT has been ground

tested for periods of 3000 to 4000 h, and operating time on orbit has exceeded

600 h (ref. 79).

The Soviets have also flown pulsed plasma thrusters on Zond-2 and the Ariel

series of experiments. Butt-end Hall plasma thrusters have been flown aboard the

Kosmos and Kust series of spacecraft in the 1975 to 1985 time period (ref. 4).

Very little technical information concerning flights of the Soviet plasma

thrusters is available in English translation.

Steady-state MPD thrusters producing over 5000 s specific impulse at over 30

percent efficiency have been demonstrated (refs. 80,81). While these devices

have been studied for over 25 years, they have yet to demonstrate the combination

of performance and lifetime required for orbit raising or planetary propulsion

applications. However, the simplicity and robustness of their design makes them
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attractive for major NASA missions if these 1iinitations can be overcome. As

discussed in recent review papers (refs. 80,81), past efforts have focused

principally on pulsed multimegawatt, self-induced magnetic field thrusters, or

30 kW to 100 kW steady-state applied-magnetic field thrusters. The apparent

inability of the thrusters studied in those efforts to provide the performance

and lifetime required has forced a renewed emphasis on MPD thruster technology

at NASA. At present, efforts are underway to quantify the dominant performance

loss mechanisms and establish their dependence on thruster geometry and operating

conditions. At NASA LeRC, applied magnetic field MPD thrusters are operated in

test facilities permitting direct measurements of thruster performance.

A major effort to establish the dependence of MPD thruster efficiency and

specific impulse on applied-field thruster geometry was recently completed at

NASA LeRC (ref. 82). Both anode and cathode radii and lengths were varied by a

• factor of two using straight cylindrical thrusters, and a flared anode thruster
was tested to obtain a preliminary assessment of the affect of electrode shape.
Thruster performance as a function of applied magnetic field strength was ob-

tained for a variety of propellant flow rates and discharge currents, and for

both argon and hydrogen propellants. The highest performance obtained was 3700

s specific impulse at 20% efficiency using hydrogen propellant.	 Performance

results for three anode radii were obtained.	 The thruster with the smaller

radius anode provided highest efficiency; the impact of the applied-field

increased dramatically for the larger thrusters. Results obtained for the

thruster geometry matrix were used to establish empirical geometric scaling

relationships valid for argon propellant at a discharge current of 1000 A. The

highest demonstrated thruster power was 220 kW.

In addition to direct performance measurements, considerable effort has been

placed on identifying and mitigating the dominant efficiency loss mechanisms.

Calorimetric studies of electrode power deposition using both continuous (ref.

82) and segmented (ref. 83) anodes clearly show that between 50 and 80% of the

power input to the thruster is lost to the anode. This fraction was found to

decrease with both increasing anode radius and increasing applied magnetic field

strength. Plasma property measurements, applied-field strengths, and anode power

deposition show a striking correlation between the electron Hall parameter and

the anode fall voltage, which may for the first time provide a physical basis for

improved MPD thruster anode design (refs. 84,85). Plume property measurements
at NASA LeRC and Ohio State University have shown that applied magnetic fields

can strongly confine the exhaust plasma (ref. 86,87). These measurements also

indicate that the applied-field can affect the cathode power balance by

increasing the plasma density near the cathode surface and reducing the radial

plasma conductivity. Both theoretical and experimental studies of plasma

instabilities (refs. 88,89) in self-field MPD thrusters have shown that these

phenomena may control the plasma transport properties, indicating that plasma

microturbulence has a substantial impact on loss mechanisms within the plasma

fluid. These studies have convincingly shown that the same instability mode is

dominant in both 30 kW steady-state and multimegawatt quasi-steady thrusters.

Not only will this aid in establishing techniques to control the transport

mechanisms, but it also has important implications for the scaling of these

devices. Studies of thruster scaling have also been initiated in a cooperative

program with Los Alamos National Laboratory, where a large scale plasma gun with

an anode diameter of 40 cm was used to study thruster operation at power levels
up to 50 MW (ref. 90).
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MPD thruster lifetime is currently limited by cathode erosion. As discussed in
Reference 80, considerable progress has been made over the last 2 to 3 years in
identifying the causes of cathode erosion and reducing the magnitude of the mass
loss. Conventional rod-shaped cathodes are now being tested which have mass loss
rates commensurate with thruster lifetimes of between 300 and 2000 h, depending
on the thruster operating condition. In addition, recent results with a high
current hollow cathode (ref. 91) indicate that hollow cathodes can be used in MPD
thrusters. This technology may provide a way to mitigate the cathode lifetime
issue since hollow cathodes have the potential to operate at much lower
temperatures than tungsten rod cathodes.

Power Processors

Arcjet Power Processors

Arcjet propulsion be g an in the 1950's, and most of the research was conducted for
primary propulsion applications at power levels exceeding 10 kW. Laboratory 60
Hz power supplies with ballast resistors were used to power the engines. Power
electronics were not developed because suitable space power systems did not exist
at power levels of interest.

During the 1980's the renewed interest in low power hydrazine arcjets led to
extensive eforts in power electronics. A lightweight, efficient one-kilowatt
prototype power processor was developed in 1986 (refs. 92,93). Of interest was
the development of an integral pulse ignition winding on the output current
averaging inductor. This circuit generated a high voltage pulse of 3 to 4 kV for
about 20 microseconds and was used to breakdown the propellant gas prior to
establishing the arc. Power processor conversion efficiency was 91%. The
prototype power processor was designed to be electrically isolated from facility
or spacecraft ground.

Flight type power electronics were developed based on the breadboard design and
were a part of a 1.8 kW hydrazine arcjet system for NSSK applications (ref. 94).
The overall mass was 4.3 kg, and the specific mass-was 2.4 kg/kW. The efficiency
of this device was reported to be between 91% and 94.5% depending on line and
load voltages. The power processor is currently in the final phase of flight
qualification.

In anticipation of the increased power capacity of the next-generation
satellites, prototype 5 kW power electronics for hydrazine arcjets were
demonstrated in 1989 (ref. 95). This device was successfully integrated to a
laboratory 5 kW hydrazine arcjet. It was found the the starting requirements for
5 kW arcjets were not significantly different from those of the lower power
thrusters. The basic power supply topology was also applied to very low power
(0.4 kW) power electronics for lightsat applications (ref. 96). The efficiency
of these power processors was improved to 93% with the addition of a low
inductance power stage layout. All of the prototype power supplies have been
successfully integrated with hydrogen arcjets.

In response to the need for a primary propulsion application, 30 kW power
electronics were developed for ammonia arcjets (ref. 97). A three-phase buck
regulator topology was selected since isolation was not required for this
specific application. This unpackaged power processor has demonstrated a power
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conversion efficiency of about 95% and a specific mass of 1.8 kg/kW. The

addition of necessary filtering for electromagnetic compatibility, incorporation

of space qualified inductors, and packaging for flight will probably increase the

specific mass to about 2 kg/kW. Arcjet starting was accomplished by shorting the

output and charging the current averaging inductor. Starts have been demonstrat-

ed with ammonia and hydrogen. The lack of input/output isolation allowed higher

efficiency and lower specific mass than the previous efforts due to simpler

magnetic circuits. However, this device did not have flexibility in grounding

schemes due to the lack of galvanic isolation between input and output stages.

For example, on a single point, negative grounded power system, only the arcjet

cathode can be grounded. This would result in the arcjet anode going to high

potentials when the ignition pulse is applied. Using this configuration,

unwanted discharges and conducted/ radiated electromagnetic interference could

result (ref. 92).

The future applications of hydrogen arcjets will be orbit-raising and other
missions requiring primary electric propulsion. At this time 10 kW power

electronics are under development at NASA LeRC (ref. 98). A full-bridge topology

was selected based on past experience (ref. 99). Arcjet starting was accom-

plished with pulse ignition techniques developed for low power thrusters (ref.

93). These power electronics successfully operated up to about 11 kW, and arcjet

integration tests have been completed. An efficiency of 94% was demonstrated;

other characteristics are summarized in Table II.

Future work in arcjet power electronics includes development of new magnetics

designs and simplified control schemes. Of special interest at higher power

levels is the application of coaxial power transformers. A 50 kW, 1600 VDC power

converter has been developed with a specific mass of 0.2 kg/kW and an efficiency

of 88% (ref . 99) . Work to improve the power conversi on effi ci ency of thi s des i gn

in an arcjet application is ongoing.

Ion Thruster Power Processors

Ion thrusters have a long flight history beginning with SERT I and SERI II in the

1960's (ref. 100). These flights were the first implementation of flight power

electronics for a high specific impulse application with mercury propellant. The

SERT II power electronics were proved reliable by long ground tests and a space

demonstration of many thousands of hours (ref. 50). This power processor made

use of the best technology available at the time and employed bipolar switching

transistors and magnetic amplifiers for control. The results were a relatively

massive power processor with a specific mass of 16.9 kg/kW and an efficiency of

87% at 0.98 kW input power (refs. 26,51,101). The power processor had a parts
count in excess of 1000.

The ground-based technology demonstration of the Solar Electric Propulsion System

(SEPS) resulted in a power processor capable of 3 kW at an efficiency of 87

(ref. 58). The specific mass was reduced to 12.3 kg/kW, but the parts count was

about 4000. In the early 1980's the Ion Auxiliary Propulsion System (IAPS) was

conceived as a low power stationkeeping ion thruster subsystem (ref. 102). The

0.17 kW operational power level hampered the efficiency of the power processor

and increased the specific mass to about 66 kg/kW.

It became obvious that the power processors for ion thruster systems were
extremely heavy, inefficient, and complex. 	 Simplification of power processor
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architecture and control schemes began in the late 1970's and early 1980's (ref.
103). Conversion from mercury to inert gas propellants further simplified the
power electronics by eliminating the need for propellant. vaporizers and control
loops to deal with condensable mercury. The development of high power MOSFET
switches reduced the drive requirements for power stages and significantly
improved their efficiency. The development of the Xenon Ion Propulsion System
(XIPS) by INTELSAT and the Hughes Aircraft Company saw the parts count of the 1.4
kW power electronics reduced to about 400 (ref. 61), an order of magnitude below
devices built for the SEPS program. The efficiency of the power processor was
92% with a specific mass of 7.9 kg/kW. This represents a significant improvement
over previous models. In addition, a 0.4 kW version of the XIPS was developed
with a power processor specific mass of 13.6 kg/kW, an efficiency of 88%, and a
parts count of about 400 (ref. 63). Table III summarizes the characteristics of
power processors developed through the 1980's, and Table IV shows the current
power processor parameters.

Other concepts developed in Europe include the ionization of propellant using an
RF field, specifically the Radio Frequency Ion Thruster Assembly (RITA) (ref.
104). Power electronics are being developed to interface this thruster to the
ARTEMIS satellite. The specific mass was 15.5 kg/kW at an input power of 0.6 kW.
Overall efficiency data were not available, but the RF generator efficiency was
85% with a mass of 1.3 kg. At 120 W dissipation, the RF generator specfic mass
was 10.8 kg/kW. As a precursor to the ARTEMIS flight, an RF ion thruster flight
experiment is scheduled for launch in 1992 using the US Shuttle Orbiter and the
European Retrievable Carrier (EURECA) (ref. 29). In addition, the UK 10 thruster
subsystem, under development in England, incorporated 88% efficiency power
electronics at an input power of 0.75 kW (ref. 105). The UK 10 propulsion system
will also be flown on the ARTEMIS satellite.

An ion thruster system has also been under development in Japan for the ETS VI
satellite utilizing two thrusters with a total input power of 1.57 kW (ref. 106).
Power processor efficiency was about 92%.

It appears that the efficiencies of ion thruster power processors were not much
improved over efforts in the 1960 to 1980 timeframe. However, the recently
developed systems had a much lower power consumption, and the control/telemetry
powers were a large fraction of the total power. In general, recently developed
power electronics make use of new switching topologies and a higher level of
circuit integration to reduce parts count and mass as well as increasing
reliability.

EVOLUTIONARY MISSION APPLICATIONS

High specific impulse electric propulsion has captured the attention of mission
planners because low thrust, low specific impulse propulsion accounts for more
than 55% of the spacecraft mass delivered to geocentric orbit and over 70`'. of
injected planetary spacecraft mass (refs. 2,107). For electric propulsion
systems to gain acceptance over conventional chemical systems, the perceived
risks encountered by employing the new technology must be overcome, and overall
financial or operational benefits must be substantial.

As shown in Table I, hydrazine resistojets have been routinely employed on
communication satellites, and the hydrazine arcjet is about to become operational
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on the Telstar 4 communications satellite. Since 1972 the Soviets have flown

more than 50 Stationary Plasma Thrusters (SPT) to provide satellite orbit

corrections (ref. 4). To date all ion propulsion flights have been experiments,

but in 1993 Japan will use ion propulsion for NSSK on the ETS VI (ref. 21). All

electric thrusters with space qualification heritage have had power levels less

than 1 kW (See Table I and Fig. 1); the Telstar arcjets to be flown in 1993 will

operate at about 1.8 kW (ref. 38). Electric propulsion has been primarily
employed as a low power, low thrust system for spacecraft auxiliary propulsion.

As the low power electric propulsion technology gains user acceptance, responses

to challenging opportunities for high power technology flight demonstrations,

orbit transfer applications, and planetary flights can be made after solid

technical bridges are made from systems operating at a few kilowatts to higher

power systems. The higher power systems will use advanced solar arrays (ref. 8)

or nuclear reactor systems, such as the SP-100, which are currently under

development (ref. 9).

With the exception of Skylab, most United States (US) spacecraft flown to date

have had power capabilities of less than 5 kW. Beginning -of—life photovoltaic
power capability representative of US spacecraft is shown in Figure 2. Using

such solar power systems or the Advanced Photovoltaic Solar Array (APSA)

technology, electric propulsion can perform stationkeeping (refs. 8,38,106),

platform orbit acquisition/orbit maintenance/disposal (refs. 74,108), primary

propulsion for small satellites (ref. 10), and orbit raising excursions into the

Van Allen belts (ref. 42). Using arcjets for platform controlled deboost/dispos-

al could be a logical extension of the low power NSSK propulsion technology. For

example, the Earth Observing System platform may require more than 1000 kg of

bipropellants for controlled disposal of the platform (ref. 74). The hydrazine

arcjet system offers a major saving in propellant and tankage mass because the

specific impulse would be increased from about 300 s using bipropel]ant thrusters

to 520 s using hydrazine arcjets. Mass savings could be further increased if low

power arcjets were used for platform orbit acquisition, assuming burn times of

a month or two are acceptable (ref. 2).

Studies have also indicated that small, low cost spacecraft can be propelled by

electric propulsion from low-Earth orbit to geosynchronous orbit or the moon in

trip times less than one year using kW-class power systems. One study assumed

a nominal spacecraft mass of 225 kg; solar panels were deployed in accordian

fashion using extendable booms, and inert gas ion thrusters were used for primary

propulsion (ref. 10).

The stationkeeping, platform propulsion, and light-sat applications do not place

severe demands on state-of-the-art photovoltaic power systems and batteries. In

fact, flight demonstration or operational tests of the arcjet, ion, and pulsed
MPD systems are scheduled prior to 1995 (See Table V). Also in 1995 the US Air

Force plans to launch the Electric Propulsion Space Experiment (ESEX) in which
a 26 kW ammonia arcjet will demonstrate ten each 15-minute firings and diagnos-

tics will provide information on operational issues such as plume impacts,

electromagnetic compatibility, and thermal radiation (ref. 32). In the ESEX

experiment power to the propulsion system will be provided by batteries.

Evolution to 10 kW and higher power electric propulsion systems will require high
performance photovoltaic systems of the baseline APSA or modified versions using

thin film radiation resistant cells (ref. 8). The technology of lightweight

concentrator arrays is now immature; however, if high efficiency cells in a
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radiation shielded package are developed, this concept might be very attractive
(ref. 8). Figure 3 shows the parameters of some of the solar array technology
demonstrations. In 1971 the 1 kW Flexible Rollup Solar Array (FRUSA) was

deployed in a flight test (ref. 109). The FRUSA had a specific power of 45 W/kg.

Later in 1984 the Solar Array Flight Experiment (SAFE) was flight tested aboard

the Shuttle Orbiter (ref. 108). The 32 m fold-out array was successfully

deployed. The SAFE array had a 12.5 kW capability; however, the 1984 flight unit

had about 99% of the area covered with solar cell mass simulators since the main

objective of the test was array deployment. The SAFE array had a specific power

of 60 W/kg. At present the Advanced Photovoltaic Solar Array (APSA) is being

developed to yield a specific power of 130 W/kg for the mast, cannister, and

stowage container (ref. 8). An APSA wing is expected to provide 7.8 kW. As

stated in Reference 8, it is likel y near-term SEP missions involving orbit

transfer or planetary spacecraft propulsion will use the baseline APSA technology

with later versions employing higher performance and more radiation resistant

cells as they become available.

The ELITE flight experiment, sponsored by the US Air Force, is a precursor to a

solar electric orbit transfer vehicle (SEOTV) flight program (ref. 42). The

ELITE, a 10 kW system, will use arcjets to demonstrate a fully integrated

propulsion system as well as demonstrate autonomous guidance, navigation, and

control, and spacecraft operations in the Van Allen radiation belts. The Air

Force has primary interest in EOTV's operating between low-Earth-orbit and

geosynchronous orbit, and thus EOTV power levels will range from about 30 to 100

kW, depending on the results of system trades. Numerous EOTV system studies have

been made evaluating the merits of ion and arcjet propulsion systems (refs.

42,110,111).

During the 1970's and 1980's there were a significant number of system studies
of solar electric propulsion for missions to rendezvous with asteroids and comets

(refs. 112,113).	 Ion propulsion systems and solar array technology were

developed to advanced status (refs. 58,108).	 More recently, the SP-100 space

reactor power system has reached a mature level of development (ref. 9). A

recent study of Nuclear Electric Propulsion (NEP) systems in the 50 kW to 100 kW

range found NEP enabled the Pluto orbiter mission and provided shorter trip times

to Uranus, Neptune, and Pluto (ref. 11). Additionally, the NEP approach provided

more frequent launch opportunities. 	 Planetary missions using SEP or NEP must

satisfy NASA's core science programs and show strong benefits over baseline

chemical propulsion systems. Confidence in higher power electric propulsion
systems will be gained by ground and flight demonstrations of subscale and

fullscale s ystems. The general evolutionary process from low power auxiliary

propulsion to primary propulsion using solar and nuclear power systems is shown

in Figure 4.

The long-term goal in the electric propulsion evolutionary process is the use of

nuclear electric propulsion for cargo and piloted missions to the moon, Mars, and

other planets. The evolutionary pathway not only involves propulsion and power

technologies but also major advances in power conversion, power management/

distribution, thermal management, and propellant systems. The 10 kW to 100 kW-

class SEP and NEP applications become precursors to NEP cargo and piloted

missions to the moon, Mars, and beyond. The Space Exploration Initiative (SEI)

is supporting the development of NEP technologies needed for precursor missions,

MW-class cargo vehicles, and piloted vehicles requiring about 10 MW to 15 MW

(ref. 114).	 The early focus of the NEP element of the SEI program is the
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evaluation of the feasibility and practicality of NEP system components and the

initiation of system studies to determine which subsystems provide the greatest

impact on development schedule, mission . performance, and cost.

CONCLUDING REMARKS

Chemical propulsion is a very large fraction of the mass of present communica-

tion, orbit raising, and planetary spacecraft. Fuel efficient electric

propulsion offers systems which can yield more payload, provide options in launch

vehicle selection, accommodate platform boost/deboost functions, and enable a set

of planetary missions. Kilowatt-class electric propulsion has found applications

for North-South stationkeeping, orbit correction, and spacecraft attitude

control. Since most US satellites to date have power capabilities less than 5

kW, near term applications will likely involve stationkeeping, drag makeup,light-
sat propulsion, or LEO satellite orbit circularization and deboost functions.

As larger solar power capabilities become available, electric propulsion could

provide Earth-space propulsion such as orbit raising and spacecraft maneuvering.

Higher power SEP and NEP will provide capabilities to support the science related

to planets, asteroids, and comets. These experiences will provide firm support

for longer range NEP cargo and piloted vehicle excursions to the moon and Mars.
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Table II. Power electronics for arcjet subsystems

Propellant Hydrazine Hydrazir.e Hydrazine/ Ammonia Hydrazine Hydrogen
Hydrogen

Type Breadboard Flight Breadboard Breadboard Breadboard Breadboard

Power 1 1.8 5 30 0.4 10
Level, kW

Efficiency, 91 >90 93 95 93 94
%

Specific N/A 2.4 N/A 1.8 N/A N/A
Mass,
kg/kW

Topology Isolated Isolated Isolated Non-isolated Isolated Isolated
(Push-Pull) (Bridge) (3 phase (Bridge) (Bridge)

buck)

Reference 92 94 95 97 96 98
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Table III. Historical summary of power electronics developed for ion
propulsion subsystems

Power SERT II SEPS ZAPS XIPS

Processor

Propellant Mercury Mercury Mercury Xenon

In p ut Power 0.98 3.05 0.17 1.4

Level, kW

Power 87 87 75 92

Efficiency,%

Specific Mass, 16 9 12.3 66 7.9

kg/kW

Approximate 1100 4000 1 700 400

Parts Count

Reference 101 58 54 61
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Table IV. Current power electronics development for ion propulsion
subsystems

Power RITA (Germany) UK-10 (U.K.) ETS-VI (Japan) XIPS (U.S.A.)

Processor

Input Power 0.58 0.75 0.79 0.44

eve f,
kW

Specific Mass, 15.5' N/A NIA 13.6

kg/kW (Calculated)

Power 0.85 (RF only) 0.88 0.92' 0.88

Efficiency (Calculated)

Reference 104 1 05 106 63
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Figure 1. - Power levels of representative electric thrusters flown since 1970
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Fi g ure 2. - Solar power capability of representative spacecraft.
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FRUSA FLIGHT TEST, 1971

SAFE FLIGHT TEST. 1984
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Figure 3. - Characteristics of solar array technology demonstrations.
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Figure 4. - Evolution of e'ectric propulsion.
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